Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(10)2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896851

RESUMEN

Mixed infection between two or more begomoviruses is commonly found in tomato fields and can affect disease outcomes by increasing symptom severity and viral accumulation compared with single infection. Viruses that affect tomato include tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV). Previous work showed that in mixed infection, ToRMV negatively affects the infectivity and accumulation of ToSRV. ToSRV and ToRMV share a high degree of sequence identity, including cis-elements in the common region (CR) and their specific recognition sites (iteron-related domain, IRD) within the Rep gene. Here, we investigated if divergent sites in the CR and IRD are involved in the interaction between these two begomoviruses. ToSRV clones were constructed containing the same nucleotides as ToRMV in the CR (ToSRV-A(ToR:CR)), IRD (ToSRV-A(ToR:IRD)) and in both regions (ToSRV-A(ToR:CR+IRD)). When plants were co-inoculated with ToRMV and ToSRV-A(ToR:IRD), the infectivity and accumulation of ToSRV were negatively affected. In mixed inoculation of ToRMV with ToSRV-A(ToR:CR), high infectivity of both viruses and high DNA accumulation of ToSRV-A(ToR:CR) were observed. A decrease in viral accumulation was observed in plants inoculated with ToSRV-A(ToR:CR+IRD). These results indicate that differences in the CR, but not the IRD, are responsible for the negative interference of ToRMV on ToSRV.


Asunto(s)
Begomovirus , Coinfección , Virus del Mosaico , Solanum lycopersicum , Begomovirus/genética , Nucleótidos , Enfermedades de las Plantas , Plantas , ADN Viral/genética , Virus del Mosaico/genética
2.
Virus Res ; 323: 198969, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36257487

RESUMEN

Begomoviruses (single-stranded DNA plant viruses transmitted by whiteflies) are economically important pathogens causing epidemics worldwide. Tomato-infecting begomoviruses emerged in Brazil in the 1990's following the introduction of Bemisia tabaci Middle East-Asia Minor 1. It is believed that these viruses evolved from indigenous viruses infecting non-cultivated hosts. However, tomato-infecting viruses are rarely found in non-cultivated hosts, and vice-versa. It is possible that viral populations in a given host are composed primarily of viruses which are well adapted to this host, but also include a small proportion of poorly adapted viruses. Following transfer to a new host, the composition of the viral population would shift rapidly, with the viruses which are better adapted to the new host becoming predominant. To test this hypothesis, we collected tomato and Sida plants growing next to each other at two locations in 2014 and 2018. Total DNA was extracted from tomato and Sida samples from each location and year and used as a template for high-throughput sequencing. Reads were mapped following a highly stringent set of criteria. For the 2014 samples, >98% of the Sida reads mapped to Sida micrantha mosaic virus (SiMMV), but 0.1% of the reads mapped to tomato severe rugose virus (ToSRV). Conversely, >99% of the tomato reads mapped to ToSRV, with 0.18% mapping to SiMMV. For the 2018 samples, 41% of the Sida reads mapped to three Sida-adapted viruses and 0.1% of the reads mapped to ToSRV, while 99.9% of the tomato reads mapped to ToSRV. These results are consistent with the hypothesis that viral populations in a single plant are composed primarily of the virus that is better adapted to the host but also include a small proportion of viruses that are poorly adapted.

3.
Phytopathology ; 112(11): 2416-2425, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35759310

RESUMEN

Fusarium wilt, caused by the soilborne fungus Fusarium oxysporum f. sp. cubense (Foc), is considered one of the most destructive diseases of bananas in Brazil. In this study, a collection of 194 monosporic isolates from several banana-producing regions located in different climatic zones along a south-to-north transect in Brazil was formed to assess the genetic structure of the population of Foc. The isolates underwent pathogenicity tests, PCR diagnosis for the detection of tropical race 4, and screening of SIX homolog genes that produce putative effector proteins. The vegetative compatibility group (VCG) of 119 isolates was determined by pairing against 17 internationally known VCG-tester strains. A group of 158 isolates was selected for simple sequence repeat (SSR) genotyping. There was moderate diversity of Foc in Brazil. Eight VCGs were identified: 0120, 0122, 0124, 0125, 0128, 01215, 01220, and 01222, of which 78% of isolates belong to a single VCG, whereas 22% of isolates are assigned to multiple VCGs, belonging to complexes of VCGs. The distribution of VCGs is uneven and independent of the banana genotype. The isolates of a VCG shared a similar profile of SIX homologs, but there was no association with geographic region. Four SSR loci were polymorphic, and, on average, 7.5 alleles were detected per locus. Thirty-five multilocus genotypes (MLGs) were identified. There was no association between VCG and MLGs, and no genetic structure of the population of Foc in Brazil was detected.


Asunto(s)
Fusarium , Musa , Brasil , Enfermedades de las Plantas/microbiología , Musa/microbiología
4.
Arch Virol ; 166(12): 3289-3299, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34554304

RESUMEN

Begomoviruses have circular, single-stranded DNA genomes encapsidated into twinned quasi-icosahedral particles and are transmitted by whiteflies of the Bemisia tabaci sibling group. Begomoviruses infect cultivated and non-cultivated plants, causing great losses in economically important crops worldwide. To better understand the genetic diversity of begomoviruses infecting the non-cultivated host Cnidoscolus urens, leaf samples exhibiting virus-like symptoms were collected in different localities in the state of Alagoas, Brazil, during 2015 and 2016. Forty-two complete DNA-A sequences were cloned and sequenced by the Sanger method. Based on nucleotide sequence comparisons, the 42 new isolates were identified as the bipartite begomovirus cnidoscolus mosaic leaf deformation virus (CnMLDV). The CnMLDV isolates were clustered in two phylogenetic groups (clusters I and II) corresponding to their sampling areas, and the high value of Wright's F fixation index observed for the DNA-A sequences suggests population structuring. At least seven independent intraspecies recombination events were predicted among CnMLDV isolates, with recombination breakpoints located in the common region (CR) and in the CP and Rep genes. Also, a high per site nucleotide diversity (π) was observed for CnMLDV isolates, with CP being significantly more variable than Rep. Despite the high genetic variability, strong negative or purifying selection was identified as the main selective force acting upon CP and Rep.


Asunto(s)
Begomovirus , Begomovirus/genética , Genoma Viral , Filogenia , Enfermedades de las Plantas , Hojas de la Planta
5.
Microorganisms ; 9(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068583

RESUMEN

Sweepoviruses are begomoviruses (genus Begomovirus, family Geminiviridae) with ssDNA genomes infecting sweet potato and other species of the family Convolvulaceae. Deltasatellites (genus Deltasatellite, family Tolecusatellitidae) are small-size non-coding DNA satellites associated with begomoviruses. In this study, the genetic diversity of deltasatellites associated with sweepoviruses infecting Ipomoea indica plants was analyzed by further sampling the populations where the deltasatellite sweet potato leaf curl deltasatellite 1 (SPLCD1) was initially found, expanding the search to other geographical areas in southern continental Spain and the Canary Islands. The sweepoviruses present in the samples coinfected with deltasatellites were also fully characterized by sequencing in order to define the range of viruses that could act as helper viruses in nature. Additionally, experiments were performed to assess the ability of a number of geminivirids (the monopartite tomato leaf deformation virus and the bipartite NW begomovirus Sida golden yellow vein virus, the bipartite OW begomovirus tomato leaf curl New Delhi virus, and the curtovirus beet curly top virus) to transreplicate SPLCD1 in their natural plant hosts or the experimental host Nicotiana benthamiana. The results show that SPLCD1 can be transreplicated by all the geminivirids assayed in N. benthamiana and by tomato leaf curl New Delhi virus in zucchini. The presence of SPLCD1 did not affect the symptomatology caused by the helper viruses, and its effect on viral DNA accumulation depended on the helper virus-host plant combination.

6.
Plant Dis ; 105(11): 3376-3384, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33934631

RESUMEN

The genetic structure of the population of Sclerotinia sclerotiorum was analyzed using 238 individuals collected from different hosts. Individuals were characterized for microsatellite genotypes and mycelial compatibility groups (MCGs). A total of 22 MCGs and 64 multilocus lineages (MLLs) were identified. There was a close relationship between the MCGs and MLLs, but there was no association between MLLs and hosts or regions. At least 39 MCGs are present in Brazil, and 68.5% of the isolates were assigned to either MCG 1 or MCG 2. Eight new MCGs were found. Seven genetic groups were identified and associated with MCGs. Most genetic variation (70.0%) was because of differences among MCGs. High values of estimates of linkage disequilibrium among loci were more frequent in the total population (all MCGs). By contrast, there was evidence of random mating in subpopulations defined by MCGs 1 and 2. Additionally, there was evidence of outcrossing in the population of S. sclerotiorum in Brazil. The population was structured by MCGs; lineages originating from asexual reproduction or selfing prevail and are widely distributed in space, are persistent in time, and affect many hosts, but there is evidence of some degree of outcrossing, which may lead to a more genetically variable population in the future.


Asunto(s)
Ascomicetos , Ascomicetos/genética , Brasil , Repeticiones de Microsatélite/genética , Micelio
7.
Mol Ecol ; 30(15): 3747-3767, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34021651

RESUMEN

Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.


Asunto(s)
Begomovirus , Secuencia de Bases , Begomovirus/genética , ADN Viral/genética , Evolución Molecular , Genoma Viral/genética , Filogenia , Enfermedades de las Plantas
8.
Arch Virol ; 163(5): 1171-1178, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29372406

RESUMEN

In recent years, symptoms of vein yellowing and leaf roll in pepper crops associated with the presence of poleroviruses (genus Polerovirus, family Luteoviridae) have been emerging in many countries worldwide. Spain was the first country in Europe where the yellowing disease of pepper was observed. In this work, a polerovirus isolate from Spain that infects pepper and has been shown to be transmitted by the aphid Aphis gossyppii (Spain-Almería 2-2013) was sequenced and compared with isolates from Japan, Israel, China and Australia. The genome (6125 nt in length, GenBank accession number KY523072) of the isolate from Spain has the typical organization of poleroviruses and contains seven open reading frames (ORF0 to ORF5 and ORF3a), putatively encoding proteins P0 to P5 and P3a. A comparison of the sequence from Spain with the four complete sequences available for poleroviruses infecting pepper showed a closer relationship to the isolate from Israel and supports the existence of a complex of at least five polerovirus species. Given that the symptoms caused by all pepper poleroviruses described to date are similar, if not identical, we propose to name them "pepper vein yellows virus 1" to "pepper vein yellows virus 5" (PeVYV-1 to PeVYV-5), with PeVYV-5 corresponding to the polerovirus from Spain described in this work. Our results and those published over the last few years have shown that the emergent poleroviruses threatening pepper crops around the world are highly complex due to recombination events.


Asunto(s)
Áfidos/virología , Capsicum/virología , Luteoviridae/genética , Enfermedades de las Plantas/virología , Animales , Australia , China , Europa (Continente) , Genoma Viral , Japón , Luteoviridae/clasificación , Luteoviridae/aislamiento & purificación , Luteoviridae/fisiología , Filogenia , Hojas de la Planta/virología , ARN Viral/genética , Recombinación Genética , Análisis de Secuencia de ADN , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...